Littelfuse Reed Switch Selection Guide

A quick reference guide to selecting reed switches for electronic applications

Power	Size	Terminals	Switch Type	Package	Pictures	Product Series	Body Length (mm)/[Inch]	Lead-Lead Length (mm)/[Inch]	Switching Power (W)	Switching Voltage (V)	Breakdown Voltage** (Vdc - min.)	Switching Current (A)	Contact Resistance (Ω)	Operating Temperature (${ }^{\circ} \mathrm{C}$)	Magnetic Sensitivity (AT)	Certification*
Low Power	Small	Leads	A: SPST-NO	Glass		MITI-7	7.00 [.276]	46.00 (1.811)	10	$170 \mathrm{Vdc}, 120 \mathrm{Vac}$	175	$0.25 \mathrm{Adc}, 0.18 \mathrm{Aac}$	0.15	-40 to +125	6-10	${ }_{c} \mathrm{M}_{\text {us }}$
			A: SPST-NO	Glass		MDSR-10	10.16 [.400]	40.38 [1.590]	10	$200 \mathrm{Vdc}, 140 \mathrm{Vac}$	250	$0.5 \mathrm{Adc}, 0.35 \mathrm{Aac}$	0.12	-40 to +125	10-25	${ }_{c} \mathrm{M}_{\text {us }}$
			A: SPST-NO	Glass		MDSR-7	12.70 [.500]	40.38 [1.590]	10	$200 \mathrm{Vdc}, 140 \mathrm{Vac}$	250	$0.5 \mathrm{Adc}, 0.35$ Aac	0.1	-40 to +125	10-25	${ }_{c} \mathrm{M}_{\text {us }}$
		SMD	A: SPST-NO	Glass		MISM-7	7.00 [.276]	13.72 [.540]	10	$170 \mathrm{Vdc}, 120 \mathrm{Vac}$	175	0.25 Adc, 0.18 Aac	0.15	-40 to +125	6-10	${ }_{c} \mathrm{M}_{\text {us }}$
			A: SPST-NO	Glass		MDSM-10	10.16 [.400]	15.62 [.615]	10	$200 \mathrm{Vdc}, 140 \mathrm{Vac}$	250	$0.5 \mathrm{Adc}, 0.35 \mathrm{Aac}$	0.12	-40 to +125	10-25	${ }_{c} \mathrm{M}_{\text {us }}$
	Medium	Leads	A: SPST-NO	Glass		FLEX-14	14.00 [.551]	44.30 [1.744]	10	$200 \mathrm{Vdc}, 140 \mathrm{Vac}$	250	$0.5 \mathrm{Adc}, 0.35 \mathrm{Aac}$	0.1	-40 to +125	10-30	${ }_{c} \mathrm{M}_{\text {us }}$
			A: SPST-NO	Glass		MDCG-4	15.24 [.600]	40.38 [1.590]	10	$200 \mathrm{Vdc}, 140 \mathrm{Vac}$	250	$0.5 \mathrm{Adc}, 0.35 \mathrm{Aac}$	0.1	-40 to +125	12-38	${ }_{c}{ }^{\text {dus }}$
			A: SPST-NO	Glass		MACD-14	14.00 [.551]	44.30 [1.744]	10	$200 \mathrm{Vdc}, 140 \mathrm{Vac}$	200	$0.5 \mathrm{Adc}, 0.35 \mathrm{Aac}$	0.1	-40 to +125	10-30	${ }_{c} \mathrm{M}_{\text {us }}$
			C: SPDT-CO	Glass		MDRR-DT	14.73 [.580]	51.66 [2.034]	5	$175 \mathrm{Vdc}, 120 \mathrm{Vac}$	200	0.25 Adc, 0.18 Aac	0.1	-40 to +125	15-30	${ }_{c}{ }^{\text {d }}$
		SMD	A: SPST-NO	Glass	8	MDSM-4	15.24 [.600]	19.30 [.760]	10	$200 \mathrm{Vdc}, 140 \mathrm{Vac}$	250	$0.5 \mathrm{Adc}, 0.35 \mathrm{Aac}$	0.1	-40 to +125	12-38	${ }_{c}$ Mus $^{\text {d }}$
			A: SPST-NO	Glass		MASM-14	14.00 [.551]	19.30 [.760]	10	$200 \mathrm{Vdc}, 140 \mathrm{Vac}$	200	$0.5 \mathrm{Adc}, 0.35$ Aac	0.1	-40 to +125	10-30	${ }_{c} \mathrm{M}_{\text {us }}$
			C: SPDT-CO	Glass		MDSM-DT	14.73 [.580]	25.40 [1.00]	5	$175 \mathrm{Vdc}, 120 \mathrm{Vac}$	200	0.25 Adc, 0.18 Aac	0.1	-40 to +125	15-30	${ }_{c} \mathrm{M}_{\text {us }}$
		Both Leads and SMD	A: SPST-NO	Overmolded		59165	16.00 [.630]	20.20 [.795]	10	$200 \mathrm{Vdc}, 140 \mathrm{Vac}$	250	$0.5 \mathrm{Adc}, 0.35 \mathrm{Aac}$	0.1	-40 to +125	10-25	${ }_{c} \mathrm{M}_{\text {us }}$
			A: SPST-NO	Overmolded		59166	16.00 [.630]	19.51 [.768]	10	$200 \mathrm{Vdc}, 140 \mathrm{Vac}$	250	$0.5 \mathrm{Adc}, 0.35 \mathrm{Aac}$	0.1	-40 to +125	10-25	${ }_{c} \mathrm{M}_{\text {us }}$
			A: SPST-NO	Overmolded		59170	11.43 [.450]	16.25 [.640]	10	$200 \mathrm{Vdc}, 140 \mathrm{Vac}$	250	$0.5 \mathrm{Adc}, 0.35 \mathrm{Aac}$	0.15	-40 to +125	10-25	${ }_{c}$ d $_{\text {us }}$
		Leads	A: SPST-NO	Overmolded		59045-1	17.78 [.700]	15.24 [.600]	10	$200 \mathrm{Vdc}, 140 \mathrm{Vac}$	250	$0.5 \mathrm{Adc}, 0.35 \mathrm{Aac}$	0.2	-40 to +105	15-30	${ }_{c} \mathrm{M}_{\text {us }}$
			A: SPST-NO	Overmolded		59050-1	22.86 [.900]	20.32 [.800]	10	$200 \mathrm{Vdc}, 140 \mathrm{Vac}$	250	$0.5 \mathrm{Adc}, 0.35 \mathrm{Aac}$	0.2	-40 to +105	12-28	${ }_{\mathrm{c}} \mathrm{N}_{\text {us }}$
High Power	Medium	Leads	A: SPST-NO	Glass		HA15-2	15.24 [.600]	40.38 [1.590]	20^{+}	$200 \mathrm{Vdc}, 265 \mathrm{Vac}$	400	$0.4 \mathrm{Adc}, 0.3 \mathrm{Aac}$	0.1	-20 to +125	17-23	${ }_{\mathrm{c}} \mathrm{M}_{\text {us }}$
											450	$0.5 \mathrm{Adc}, 0.35 \mathrm{Aac}$			22-33	
			A: SPST-NO	Glass		MLRR-4	15.24 [.600]	40.38 [1.590]	20	$200 \mathrm{Vdc}, 140 \mathrm{Vac}$	250	1.0 Adc, 0.7Aac	0.1	-40 to +125	17-38	c ${ }^{\text {mus }}$
			A: SPST-NO	Glass		MLRR-3	15.24 [.600]	56.64 [2.230]	20	$200 \mathrm{Vdc}, 140 \mathrm{Vac}$	250	1.0 Adc, 0.7Aac	0.1	-40 to +125	17-38	${ }_{c} \mathrm{M}_{\text {us }}$
			A: SPST-NO	Glass		MVSR-20	19.69 [.775]	56.77 [2.235]	10	$1000 \mathrm{Vdc}, 700 \mathrm{Vac}$	2000	$0.5 \mathrm{Adc}, 0.35 \mathrm{Aac}$	0.1	-75 to +125	17-38	${ }_{c} \mathrm{~N}_{\text {us }}$
		SMD	A: SPST-NO	Glass		MLSM-4	15.24 [.600]	19.56 [.770]	20	$200 \mathrm{Vdc}, 140 \mathrm{Vac}$	250	1.0 Adc, 0.7Aac	0.1	-40 to +125	17-38	${ }_{c} \mathrm{M}_{\text {us }}$
			A: SPST-NO	Glass		MLSM-3	15.24 [.600]	19.56 [.770]	20	$200 \mathrm{Vdc}, 140 \mathrm{Vac}$	250	1.0 Adc, 0.7Aac	0.1	-40 to +125	17-38	${ }_{\mathrm{c}} \mathrm{N}_{\text {us }}$
		Leads	A: SPST-NO	Overmolded		59050-2	22.86 [.900]	20.32 [.800]	20	$200 \mathrm{Vdc}, 265 \mathrm{Vac}$	400	$0.5 \mathrm{Adc}, 0.35 \mathrm{Aac}$	0.2	-20 to +105	17-28	$\mathrm{cFs}_{\text {us }}$
			A: SPST-NO	Glass		MRPR-20	20.32 [.800]	56.64 [2.230]	50	$250 \mathrm{Vdc}, 265 \mathrm{Vac}$	750	1.5 Adc, 1.1 Aac	0.1	-20 to +125	17-43	c ${ }_{\text {M }}$
			C: SPDT-CO	Glass		DRS-DTH	39.67 [1.562]	85.73 [3.375]	30	$500 \mathrm{Vdc}, 350 \mathrm{Vac}$	1200	0.5 Adc, 0.35 Aac	0.125	-20 to +125	50-80	${ }^{7} \mathrm{M}_{\text {us }}$

Littelfuse Reed Switch Selection Guide

A quick reference guide to selecting reed switches for electronic applications

MITI-7 and MITI-7L	MATE-12B	MDSR-10	MDSR-7	FLEX-14	MDCG-4	MACD-14
		,		8		8
This compact reed switch is somewhat more expensive than larger parts. It is typically used only when minimizing component size is critical. This switch is also available in surface-mount* packaging as the MISM-7 (Tape \& Reel)and MISM-7 (Bulk Pack). This is also available in MITI-7L which is highly recommended for applications that requires longer life.	This switch is same size as MDSR-7 Series but, is more suitable for Automatic Test Equipment(ATE), Appliance and other applications that requires high reliability and longer life cycles.	This cost-effective, small reed switch is also available in surface-mount* packaging as the MDSM-10R (Tape \& Reel), the MDSM-10B (Bulk Pack), and the 59170 (overmolded*).	This small reed switch is only slightly larger than the MIT1-7 and MDSR-10 switches, but with the same small glass diameter as those switches. The MDSR-7 switch is also available in an overmolded* PCBmount package, including surface-mount* packaging, as the 59165 and 59045 .	The FLEX-14's leads are easily formed or bent to meet an application's requirements. In addition, its slightly shorter glass length and slighty longer lead length provide high flexibility when designing it into products.	The MDCG-4 is one of Littelfuse most popular reed switches and is available in a wide range of sensitivities. It s also available in an overmolded* PCB-mount package as the 59050 , and in surfacemount* packaging as the MDSM-4R (Tape \& Reel) and MDSM-4B (Bulk Pack).	The MACD-14 has low hysteresis between activate (closure) and deactivate (opening). This is also known as close differential. This feature can be an advantage in some sensing applications. One such example is when the activating magnet travel distance is limited. It is also available in surfacemount* packaging as the MASM-14R (Tape \& Reell and MASM-14B (Bulk Pack).
*Se other side for productimage andspecifications.						
HA15-2	MLRR-4	MLRR-3	MVSR-20	MRPR-20	MDRR-DT	DRS-DTH
8						
The HA15-2 is physically very similar to the MDCG-4, butit uses a pressurized nitrogen atmosphere that allows switching 240 Vac power line mains voltages. The HA15-2 also provides good switching life on non-suppressed inductive loads, as well as less demanding ones. It is available in a wide variety of Littelfuse sensor packages.	The MLRR-4 has the smallest hysteresis between activate and deactivate (close differential. This can be an advantage in some sensing applications, butitcan also be a disadvantage in sensing applications where the magnet is moving slowly. The MLRR-4 is well suited to switching small incandescent lamps (<28V, <0.2A). This switch is also available in surface-mount* packaging as the MLSM-4R (Tape \& Reel) and MLSM-4B (Buk Pack).	This reed switch has the longest wire leads of any of the $15.24 \mathrm{~mm} / 0.600$ inch glass length switches. The MLRR-3 is a costeffective, small 20 Watt switch. It provides good switching life on a wide range of loads. It is also available in surface-mount* packaging as the MLSM-3R (Tape \& Reel) and MLSM-3B (Bulk Pack).	The MVSR-20 has advantages in high voltage and low temperature applications because its electrical contacts are in a vacuum instead of a nitrogen atmosphere. The voltage ratings are 1000 Vdc switching and 2000 Vdc breakdown (see data sheet for additional information). The switch is rated at a rather high 35 AT (Ampere-turn) in order to meet the 1000 Vdc switching voltage at low currents ($<10 \mathrm{~mA}$). If a higher switching current or $R C$ arc suppression is used, it's possible to realize a higher switching voltage or lower switch AT value. Contact Littelfuse for recommendations. As the switch AT increases (sensitivity decreases), the contact gap increases, resulting in increased voltage capability. Typical breakdown voltage is 100 times the AT value. In addition, the MVSR-20 can be used at temperatures near absolute zero if carefully packaged. For additional information, see Littelfuse Application Note AN105-Extreme Temperature Reed Switch Operation.	The MRPR-20 uses a pressurized nitrogen atmosphere that allows switching up to 265 Vac and 50 VA . This switch maintains a 750 Vdc breakdown across the sensitivity range of 17 AT to 43 AT. The MRPR-20 has good switching life capability for a variety of electrical loads from Vdc logic level to 240 Vac power line mains voltage.	This is a single-pole, double-throw (SPDT) reed switch, also known as a Form C reed switch. The addition of a normally closed contact to the standard normally open contact meets the needs of a wide variety of applications. It is not unusual for the normally closed contact to be the only contact used in an application. However, this capability results in compromises that affect the switching voltage and current, as well as cost.	Like the MDRR-DT, the DRS-DTH is singlepole, double-throw (SPDT) reed switches. Their large size provides higher electrical performance but also increases their cost. The DRS-DTH uses a contact coating similar to many of Littelfuse reed switches.

Note:
This tool should ONLY be used as a quick reference guide to suggest a starting point in the selection
process. Once a part has been selected, the designer should retrieve the actual datasheet from ittefuse.com
itteffuse aways recommends conducting application testing to verify the correct part selection
horder to use this quick reference guide, the designer has to know just a few of key parameters
suct as switching power, voltage, current, size, mounting method, and safety certifications.

Market Segments/Applications:

eed switches are used in a number of market applications including, but not limited to:

- White goods and smal home appliances, such as fluid leve and posi
- Gas and water metering such as tamper switch and pulse counting Safety and security, such as electronic door locks, window/door sensors, and smoke alarms
- Others, such as fitness equipment, electronic shelf labeling, solar trackers, and equipment for hazardous environments Visit us at littelfuse. com for assistance with application solutions.

