Thyristor **Datasheet**

RoHS

SRU6008xSx 8 A Sensitive SCR (reverse undefined)

Description:

The SRU6008xSx SCR series is specifically designed for high voltage capacitor discharge applications.

Features and Benefits:

 High forward blocking voltage of 600 V

High pulse current handling

- High di/dt of 100 A/µs
- Reverse direction not desgined to function

Applications:

capacity

Typical applications are high voltage pulse generation by capacitor discharge for electric fences, CEWs (contact electric weapon) and high-power strobe lights.

Pinout Diagram

1: Cathode; 2: Anode; 3: Gate; 4: Anode

Product Summary

Characteristic	Value	Unit
I _{T(RMS)}	8	А
V _{DRM}	600	V
V _{RRM}	N/A	V
I _{GT}	0.2	mA

Absolute Maximum Ratings – Sensitive SCRs

Symbol	Characteristics	Conditions	Value	Units	
V _{DSM}	Non-repetitive Peak Off-state Voltage	$T_{J} = 25^{\circ}C$	800	V	
I _{T(RMS)}	RMS On-state Current	T - 1209C	8		
I _{T(AV)}	Average On-state Current	$T_{c} = 130 \text{ C}$	5.1	A	
	Deale New and etitical Course Coursest	Single Half Cycle, f = 50 Hz, T_J (initial) = 25°C	83		
ITSM	Peak Non-repetitive Surge Current	Single Half Cycle, $f = 60 \text{ Hz}, T_J$ (initial) = 25°C	100		
l²t	I ² t Value for Fusing	t _p = 8.3 ms	41	A²s	
di/dt	Critical Rate-of-Rise of On-state Current	T _J = 150°C f = 60 Hz	100	A/µs	
I _{GM}	Peak Gate Current	P _W = 20 μs T _J = 150°C	0.5	А	
P _{G(AV)}	Average Gate Power Dissipation	$T_{J} = 150^{\circ}C$	0.1	W	
T _{stg}	Storage Temperature Range	_	-40 to 150	°C	
TJ	Operating Junction Temperature Range	_	-40 to 150	°C	

Electrical Characteristics ($T_J = 25^{\circ}C$ unless otherwise specified)

Cumhal	Chavestavistic	Conditions	Value			Unit	
Зутьої	Characteristic	Conditions	Min.	Тур.	Max.	Onit	
1	Cata Trigger Current		20	-	_	μA	
IGT	I _{GT} Gate Irigger Current	$V_D = 12 V R_L = 60 \Omega$	_	-	200		
V _{GT}	Gate Trigger Voltage			-	0.8	V	
dv/dt	Critical Rate of Rise of Off-stage Voltage	$V_D = V_{DRM}$; RGK = 220 Ω ; T _J = 125°C	15	-	-	V/µs	
V_{GD}	Gate Non-trigger Voltage	$V_D = V_{DRM} R_L = 3.3 \text{ k}\Omega T_J = 150^{\circ}\text{C}$	0.1	-	_	V	
Ι _Η	Holding Current	l _T = 200 mA (initial)	-	-	6	mA	
t _q	Turn-off Time	$I_T = 0.5 \text{ A}; t_p = 50 \mu\text{s}; \text{ dv/dt} = 5 \text{ V/}\mu\text{s}; \text{ di/dt} = -30 \text{ A/}\mu$	_	55	-	μs	
t _{gt}	Turn-on Time	$I_G = 2 \times I_{GT} P_W = 15 \ \mu s I_T = 16 \ A$	_	1	-	μs	
V _{GRM}	Peak Reverse Gate Voltage	I _{GR} = 10 μA	6	_	_	V	

Static Characteristics

Symbol	Characteristic	Characteristic Conditions		Value			Unit
Symbol	Characteristic			Min.	Тур.	Max.	Om
V _{TM}	Peak On-state Voltage Drop	I _T = 16A; t _p = 380 μs			-	1.6	V
1	I _{DRM} Repetitive Peak Off-state Current	V V 600.V	$T_J = 25^{\circ}C$	-	-	5	μA
DRM		$v_{\rm D} = v_{\rm DRM} = 600 v$	$T_{J} = 150^{\circ}C; RGK = 220 \Omega$	-	-	2	mA

Thermal Resistances

Symbol	Characteristic	Conditions	Value	Unit
$R_{\theta(JC)}$	Thermal Resistance, Junction to case (AC)	_	1.2	°C/W

Characteristic Curves

SUPPLY FREQUENCY: 60 Hz Sinusoidal LOAD: Resistive
RMS On-State Current: [I_{T(RMS)}]: Maximum Rated Value at Specified Case Temperature
Notes:

Gate control may be lost during and immediately following surge current interval.
Overload may not be repeated until junction temperature has returned to steady-state rated value.

Littelfuse

Soldering Parameters

	Characteristic	Value
Reflow Condition		Pb – Free assembly
	Temperature Min (T _{s(min)})	150°C
Pre-heat	Temperature Max (T _{s(max)})	200°C
	Time (min to max) (t_s)	60 – 120 secs
Average ra	amp up rate (Liquidus Temp)(T_L) to peak	3°C/second max
T _{S(max)} to T _L - Ramp-up Rate		3°C/second max
Poflow	Temperature (T_L) (Liquidus)	217°C
nellow	Time (t _L)	60 – 150 seconds
Peak Temperature (T _P)		260 ^{+0/-5} °C
Time with	in 5°C of actual peak Temperature (t _p)	30 seconds max
Ramp-down Rate		6°C/second max
Time 25°C to peak Temperature (T _P)		8 minutes max
Do Not Ex	cceed	260°C

Physical Specifications

Characteristic	Value
Terminal Finish	100% Matte Tin-plated
Body Material	UL Recognized compound meeting flammability rating V-0
Lead Material	Copper Alloy

Design Considerations

Careful selection of the correct component for the application's operating parameters and environment will go a long way toward extending the operating life of the Thyristor. Good design practice should limit the maximum continuous current through the main terminals to 75% of the component rating. Other ways to ensure long life for a power discrete semiconductor are proper heat sinking and selection of voltage ratings for worst case conditions. Overheating, overvoltage (including dv/dt), and surge currents are the main killers of semiconductors. Correct mounting, soldering, and forming of the leads also help protect against component damage.

Environmental Specifications

Test	Specifications and Conditions
AC Blocking	MIL-STD-750, M-1040, Cond A Applied Peak AC voltage for 1008 hours
Temperature/Humidity	EIA / JEDEC, JESD22-A101, 1008 hours; 160V - DC: 85°C; 85% relative humidity
Temperature Cycling	MIL-STD-750, M-1051, 1000 cycles; -55°C to +150°C; 15-min dwell-time
Resistance to Solder Heat	MIL-STD-750 Method 2031
Solderability	ANSI/J-STD-002, category 3, Test A
Moisture Sensitivity Level	Level 1

Part Outline Drawing (TO-252AA) (D Package) – DPAK Surface Mount)

Completed		Inches		Millimeters		
Symbol	Min.	Typical	Max.	Min.	Typical	Max
A	0.037	0.040	0.043	0.94	1.01	1.09
В	0.235	0.243	0.245	5.97	6.16	6.22
С	0.106	0.108	0.113	2.69	2.74	2.87
D	0.205	0.208	0.213	5.21	5.29	5.41
E	0.255	0.262	0.265	6.48	6.65	6.73
F	0.027	0.031	0.033	0.69	0.80	0.84
G	0.087	0.090	0.093	2.21	2.28	2.36
Н	0.085	0.092	0.095	2.16	2.33	2.41
I	0.176	0.179	0.184	4.47	4.55	4.67
J	0.018	0.020	0.023	0.46	0.51	0.58
К	0.035	0.037	0.039	0.90	0.95	1.00
L	0.018	0.020	0.023	0.46	0.51	0.58
Μ	0.000	0.000	0.004	0.00	0.00	0.10
Ν	0.021	0.026	0.027	0.53	0.67	0.69
0	0°	0°	5°	0°	0°	5°
Р	0.042	0.047	0.052	1.06	1.20	1.32
Q	0.034	0.039	0.044	0.86	1.00	1.11

Packing Options

Part Number	Marking	Package	Туре	Weight	Packing Mode	Base Quantity
SRU6008DS2RP	SRU6008DS2	TO-252	Sensitive SCR	0.3 g	Embossed Carrier	2500

Part Numbering and Marking

TO-252AA - (D Package)

Date Code Marking Y:Year Code M: Month Code L: Location Code DD: Serial Number

TO-252 Embossed Carrier Reel Pack (RP) Specifications

Meets all EIA-418-2 Standards

Disclaimer Notice

Information furnished is believed to be accurate and reliable. However, users should independently evaluate the suitability of and test each product selected for their own applications. Littelfuse products are not designed for, and may not be used in, all applications. Read complete Disclaimer Notice at http://www.littelfuse.com/disclaimer-electronics. Read complete Disclaimer Notice at http://www.littelfuse.com/disclaimer-electronics.

Part of:

7