X3-Class **Power MOSFET™** # **IXTP90N20X3 IXTH90N20X3** = 200V90A ≤ $12m\Omega$ N-Channel Enhancement Mode Avalanche Rated | S S | TO-220
(IXTP) | | | |-----|------------------|-----------------|---------| | | | G _{DS} | D (Tab) | | G = Gate | D | = | Drain | |------------|-----|---|-------| | S = Source | Tab | = | Drain | | Symbol | Test Conditions | Maximum Ratings | | | |------------------------|---|-----------------|----------|--| | V _{DSS} | $T_J = 25^{\circ}C$ to 175°C | 200 | V | | | \mathbf{V}_{DGR} | $T_{_{\rm J}}$ = 25°C to 175°C, $R_{_{\rm GS}}$ = 1M Ω | 200 | V | | | V _{GSS} | Continuous | ±20 | V | | | $V_{\rm GSM}$ | Transient | ±30 | V | | | I _{D25} | T _C = 25°C | 90 | Α | | | I _{DM} | $T_{\rm C} = 25^{\circ}$ C, Pulse Width Limited by $T_{\rm JM}$ | 220 | Α | | | I _A | T _C = 25°C | 45 | Α | | | E _{AS} | $T_{c} = 25^{\circ}C$ | 1 | J | | | dv/dt | $I_{_{S}} \le I_{_{DM}}, V_{_{DD}} \le V_{_{DSS}}, T_{_{J}} \le 150^{\circ}C$ | 20 | V/ns | | | P _D | T _C = 25°C | 390 | W | | | T _J | | -55 +175 | °C | | | T _{JM} | | 175 | °C | | | T _{stg} | | -55 +175 | °C | | | T _L | Maximum Lead Temperature for Soldering | 300 | °C | | | T _{SOLD} | 1.6 mm (0.062in.) from Case for 10s | 260 | °C | | | M _d | Mounting Torque | 1.13 / 10 | Nm/lb.in | | | Weight | TO-220
TO-247 | 3
6 | g
g | | ## **Features** - International Standard Packages - Low R_{DS(ON)} and Q_G Avalanche Rated - Low Package Inductance #### **Advantages** - High Power Density - Easy to Mount - Space Savings # **Applications** - Switch-Mode and Resonant-Mode **Power Supplies** - DC-DC Converters - PFC Circuits - AC and DC Motor Drives - Robotics and Servo Controls | Symbol $(T_J = 25^{\circ}C,$ | Test Conditions Unless Otherwise Specified) | Charac
Min. | teristic Typ. | eristic Values Typ. Max. | | |------------------------------|---|----------------|---------------|--------------------------|--------------------------| | BV _{DSS} | $V_{GS} = 0V, I_D = 250\mu A$ | 200 | | | V | | V _{GS(th)} | $V_{DS} = V_{GS}$, $I_D = 250\mu A$ | 2.5 | | 4.5 | V | | I _{GSS} | $V_{GS} = \pm 20V, V_{DS} = 0V$ | | | ±100 | nA | | I _{DSS} | $V_{DS} = V_{DSS}$, $V_{GS} = 0V$ $T_{J} = 125^{\circ}C$ | | | 5
100 | μ Α
μ Α | | R _{DS(on)} | $V_{GS} = 10V, I_{D} = 0.5 \cdot I_{D25}, Note 1$ | | 10 | 12 | mΩ | | Symbol | Test Conditions | Characteristic Values | | | |--|---|------------------------------|------|-----------| | $(T_J = 25^{\circ}C, Unless Otherwise Specified)$ Min. | | Тур. | Max | | | g _{fs} | $V_{DS} = 10V, I_{D} = 0.5 \bullet I_{D25}, Note 1$ | 60 | 100 | S | | R _{Gi} | Gate Input Resistance | | 1.4 | Ω | | C _{iss} | | | 5420 | pF | | C _{oss} | $V_{GS} = 0V, V_{DS} = 25V, f = 1MHz$ | | 930 | pF | | C _{rss} | | | 4 | pF | | | Effective Output Capacitance | | | | | $C_{o(er)}$ | Energy related $\int V_{GS} = 0V$ | | 420 | pF | | $C_{o(tr)}$ | Time related $\int_{DS} V_{DS}^{GS} = 0.8 \cdot V_{DSS}$ | | 1300 | pF | | t _{d(on)} | Resistive Switching Times | | 22 | ns | | t, (| $V_{GS} = 10V, V_{DS} = 0.5 \cdot V_{DSS}, I_{D} = 0.5 \cdot I_{D25}$ | | 26 | ns | | t _{d(off)} | | | 62 | ns | | t _f | $R_{_{G}} = 5\Omega$ (External) | | 13 | ns | | $Q_{g(on)}$ | | | 78 | nC | | Q _{gs} | $V_{GS} = 10V$, $V_{DS} = 0.5 \cdot V_{DSS}$, $I_{D} = 0.5 \cdot I_{D25}$ | | 23 | nC | | \mathbf{Q}_{gd} | | | 22 | nC | | R _{thJC} | | | | 0.32 °C/W | | R _{thCS} | TO-220 | | 0.50 | °C/W | | | TO-247 | | 0.21 | °C/W | #### Source-Drain Diode | Symbol | Test Conditions | Characteristic Values | | | | |---|--|-----------------------|--------------------|-----|---------------| | $(T_J = 25^{\circ}C, T_{IJ})$ | Unless Otherwise Specified) | Min. | Тур. | Max | | | I _s | $V_{GS} = 0V$ | | | 90 | Α | | SM | Repetitive, pulse Width Limited by $\mathrm{T}_{_{\mathrm{JM}}}$ | | | 360 | Α | | V _{SD} | $I_F = I_S$, $V_{GS} = 0V$, Note 1 | | | 1.4 | V | | $\left. egin{array}{l} \mathbf{t}_{rr} & \\ \mathbf{Q}_{RM} & \\ \mathbf{I}_{RM} & \end{array} ight. ight.$ | $I_F = 45A$, -di/dt = 100A/ μ s
$V_R = 100V$ | | 124
650
10.5 | | ns
nC
A | Note 1. Pulse test, $t \le 300\mu s$, duty cycle, $d \le 2\%$. ## **ADVANCE TECHNICAL INFORMATION** The product presented herein is under development. The Technical Specifications offered are derived from a subjective evaluation of the design, based upon prior knowledge and experience, and constitute a "considered reflection" of the anticipated result. IXYS reserves the right to change limits, test conditions, and dimensions without notice.